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Abstract

A random sum formula is derived for the forward recurrence time

associated with the busy period length of the M jGj1 queue. This

result is then used to (i) provide a necessary and su�cient condition

for the subexponentiality of this forward recurrence time, and (ii)

establish a stochastic comparison in the convex increasing (variability)

ordering between the busy periods in two M jGj1 queues with service

times comparable in the convex increasing ordering.

Key words: Random sums, M jGj1 queues, busy period, subexponen-
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1 Introduction

Random sums, and geometric random sums in particular, are a common
occurence in applied probability models [4, 6]. For instance, it is well known
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that the stationary waiting time of a stable M jGIj1 queue with Poisson
arrival rate � and generic service time � can be represented (in distribution)
as a geometric sum of i.i.d. rvs distributed like the forward recurrence time
�? associated with � [7]. A similar representation holds for the stationary
waiting time of a stable GIjGIj1 queue in terms of ladder height rvs [10].
Such random sum representations have proved useful for establishing various
properties of interest [4, 6].

Perhaps less well known is the fact that similar geometric sums can also
be found in the context of M jGIj1 queues. Indeed, consider a standard
M jGj1 queue with arrival rate � and generic service time �, and let B denote
its generic busy period length. Using some classical results on the Laplace
transform of B, we show that the forward recurrence time B? associated
with the busy period of an M jGIj1 can be represented as a geometric sum
of i.i.d. rvs whose common distribution is derived from that of the forward
recurrence time �?. This random sum representation is presented in Section
2, and its proof is given in Section 5.

We give two applications for this representation result: In Section 3, we
show that the subexponentiality of �? is equivalent to that of B?, with a
simple relation between the tail of their distributions. This result was orig-
inally derived by Boxma [1] for regularly varying �, and further generalized
in the form given here (but with a di�erent proof) by Jelenkovic and Lazar
[5] to the case where �? is subexponential. In Section 4, we investigate the
monotonicity properties ofM jGIj1 queues under the (increasing) convex or-
dering. Using the random sum representation we show that the busy period
distribution is monotone in the increasing convex ordering when the service
time distribution is increased in the increasing convex ordering. To the best
of the author's knowledge this result is new [14, p. 147].

A word on the notation used in this paper: For any integrable IR+{valued
rv X, the forward recurrence time X? is de�ned as the rv with integrated
tail distribution given by

P [X? > x] :=
1

E [X]

Z
1

x

P [X > t] dt; x � 0: (1)

We shall �nd it useful to use the equivalent representation

P [X? > x] :=
E [(X � x)+]

E [X]
; x � 0 (2)
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(where we write x+ = max(x; 0) for any scalar x). For mappings f; g : IR+ !

IR, the relation f(x) � g(x) is understood as limx!1
f(x)
g(x)

= 1, the quali�er

(x!1) being omitted for the sake of notational simplicity.

2 A random sum in the M jGj1 queue

Consider a standard M jGj1 queue with arrival rate � and generic service
time �; we refer to this queueing system as the M jGj1 queue (�; �). Let B
denote its generic busy period, i.e., the length of time that elapses between
the arrival of a customer �nding an empty system and the departure of the
�rst customer thereafter which leaves the system empty.

In Section 5 we show that the forward recurrence time B? associated with
B admits a random sum representation: In order to present this result, let
� denote the IN{valued rv which is geometrically distributed according to

P [� = `] = (1�K)K`�1; ` = 1; 2; : : : (3)

with
� := �E [�] and K := 1� e��: (4)

Next, we introduce the IR+-valued rv U distributed according to

P [U � x] :=
1

K

�
1� e��P[�?�x]

�
; x � 0 (5)

where �? is the forward recurrence time associated with the generic service
time �. We are now ready to formulate the key observation of the paper:

Theorem 1 Consider a sequence of IR+{valued i.i.d. rvs fUn; n = 1; 2; : : :g
distributed according to (5), and an IN{valued rv � distributed according to
(12). Then, with the sequence fUn; n = 1; 2; : : :g taken to be independent
of the rv �, it holds that

B? =st U1 + : : :+ U�: (6)

where =st denotes equality in distribution.

In analogy with standard results for the GIjGIj1 queue [10], it is natural
to wonder whether the forward recurrence time associated with the busy
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period in the GIjGIj1 queue also admits a representation as a geometric
random sum of i.i.d. rvs whose distribution is now derived from that of ladder
height rvs. To the best of the author's knowledge no results along these lines
are known.

In the process of establishing Theorem 1 in Section 5 we shall show that

E [B] =
K

�(1�K)
: (7)

We also note from (4) and (5) that

P [U > x] =
e��

K

�
e�P[�?>x] � 1

�
; x � 0: (8)

Moreover, using (2) we see that (8) can be rewritten as

P [U > x] =
e��

K

�
e�E[(��x)

+] � 1
�
; x � 0: (9)

3 Subexponentiality in the M jGj1 queue

We begin with some standard de�nitions and facts concerning subexponential
rvs [2, 3]: The IR+-valued rv X is said to have a subexponential tail, denoted
X 2 S, if

P [X1 + : : :+Xn > x] � nP [X > x] ; n = 1; 2; : : : (10)

where fXn; n = 1; 2; : : :g denotes a sequence of i.i.d. rvs, each distributed
like X. In fact, (10) holds for all n = 1; 2; : : : if and only if it holds for some
n � 2. Under appropriate conditions, the equivalences (10) can be extended
to random sums [3, Thm. 1.3.9, p. 45] (and [3, Thm. A3.20, p. 580]).

Proposition 1 Let the IN{valued rv N be independent of the sequence of

i.i.d. rvs fX;Xn; n = 1; 2; : : :g. If X 2 S, then X1 + : : :+XN 2 S with

P [X1 + : : :+XN > x] � E [N ]P [X > x] (11)

provided E
h
zN

i
<1 for some z > 1.
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Of particular interest for the discusssion here is the case when N is dis-
tributed according to the geometric distribution

P [N = `] = (1� p)p`�1; ` = 1; 2; : : : (12)

for some 0 < p < 1. Standard calculations yield E [N ] = (1� p)�1, and

E
h
zN
i
=
1X
`=1

(1� p)p`�1z` =
(1� p)z

1� pz
; jzj < p�1 (13)

with p�1 > 1. Thus, Proposition 1 applies, in fact, can be strenghtened as
follows [3, Cor. A3.21, p. 581]:

Proposition 2 Let the IN{valued rv N be independent of the sequence of
i.i.d. rvs fX;Xn; n = 1; 2; : : :g, and assume N to be distributed according
to (12). Then, X 2 S if and only if X1 + : : :+XN 2 S, in which case

P [X1 + : : :+XN > x] � (1� p)�1P [X > x] (14)

The main result of this section is the following

Proposition 3 Consider a standard M jGj1 queue (�; �) with generic busy
period rv B. We have B? 2 S if and only if �? 2 S, in which case

P [B? > x] �
�

1� e��
P [�? > x] : (15)

Proof. Combining Theorem 1 with Proposition 2, we already get that
B? 2 S if and only U 2 S, in which case

P [B? > x] � (1�K)�1P [U > x] : (16)

Next, with (8) in mind, we observe that limx!1P [�? > x] = 0, so that

e�P[�?>x] = 1 + �P [�? > x] + o(P [�? > x]):

Hence, from (8) we get

P [U > x] =
e��

K
(�P [�? > x] + o(P [�? > x])) ;
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and the conclusion

P [U > x] �
�e��

K
P [�? > x] (17)

follows. Therefore, since S is closed under tail-equivalence [3, Lemma A3.15,
p. 572], we get U 2 S if and only if �? 2 S, and we complete the proof of
(15) by injecting this last fact with (17) into the equivalence (16).

4 Orderings in the M jGj1 queue

For IR{valued random variables X and Y , we say that X is smaller than Y

in the strong stochastic (resp. convex, increasing convex) ordering if

E ['(X)] � E ['(Y )] (18)

for all mappings ' : IR ! IR which are monotone increasing (resp. convex,
increasing and convex) provided the expectations in (18) exist. In that case
we write X �st Y (resp. X �cx Y , X �icx Y ). Additional material on these
orderings can be found in the monographs [11, 13, 14]. The following result
is well known [14, Prop. 2.2.5, p. 45].

Proposition 4 Let the IN{valued rv N be independent of the sequences of

i.i.d. rvs fX;Xn; n = 1; 2; : : :g and fY; Yn; n = 1; 2; : : :g. If X �st Y , then

it holds that

X1 + : : :+XN �st Y1 + : : :+ YN (19)

Results similar to (19) hold mutatis mutandis under the weaker assump-
tions X �cx Y and X �icx Y . The main result of this section is the following
stochastic comparison.

Proposition 5 Consider twoM jGj1 queues (�; �1) and (�; �2) with generic

busy period rvs B1 and B2, respectively. If �1 �cx �2, then B1 �cx B2.

Throughout, for each i = 1; 2, quantities associated with the M jGj1
queues (�; �i) are subscripted by i.

Proof. Under the condition �1 �cx �2, E [�1] = E [�2], whence �1 = �2
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and K1 = K2, and the inequalities E [(�1 � x)+] � E [(�2 � x)+] hold for
all x � 0. Invoking (9), we immediately conclude that U1 �st U2. Next,
applying Proposition 4 to the random sum representation (6), we see that
B?

1 �st B
?

2 , namely

1

E [B1]

Z
1

x

P [B1 > t] dt �
1

E [B2]

Z
1

x

P [B2 > t] dt; x � 0: (20)

This is equivalent to

E [(B1 � x)+]

E [B1]
�

E [(B2 � x)+]

E [B2]
; x � 0: (21)

Finally, observe from (7) and from the observations made above that E [B1] =
E [B2], so that E [(B1 � x)+] � E [(B2 � x)+] for all x � 0, and the desired
conclusion readily follows [14, Thm. 1.3.1, p. 9].

The literature contains few stochastic comparison results for in�nite server
queues; they deal mostly with the number of customers, e.g., [14, Prop. 7.1.1,
p. 127], [14, Table 7.2, p. 147]. However, a simple coupling argument readily
leads to the following comparison:

Proposition 6 Consider twoM jGj1 queues (�; �1) and (�; �2) with generic

busy period rv B1 and B2, respectively. If �1 �st �2, then B1 �st B2.

Finally, we combine Propositions 5 and 6 with the characterization of the
convex increasing ordering provided in [9]:

Proposition 7 Consider twoM jGj1 queues (�; �1) and (�; �2) with generic

busy period rv B1 and B2, respectively. If �1 �icx �2, then B1 �icx B2.

5 A Proof of Theorem 1

Consider the process of particle counting as described in Chapter 6 of the
monograph by Tak�acs [15, p. 205]. Type II counters are equivalent to in�nite
server queues if particles are interpreted as customers. So-called \registered"
particles [15, p. 205] are those particles which arrive at an instant when
there is no other particle present; in the in�nite server queue context, such
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a registered customer is a customer that initiates a busy period. Let the rv
R denote the length of time that elpases between the arrival epochs of two
consecutive registered particles, or equivalently, in the in�nite server queue,
the time duration between the start of two consecutive busy periods.

Theorem 1 in [15, p. 210] provides a closed form expression for the
Laplace{Stieltjes transform of the rv R when customers arriva according to
a Poisson process: For the M jGj1 queue (�; �), it holds that

E

h
e��R

i
= 1�

1

�+ �
�

1

T (�)
; � � 0 (22)

with

T (�) :=
Z 1
0

exp
�
��t� �

Z
t

0
P [� > x] dx

�
dt: (23)

Lemma 1 With the notation (4){(5), it holds that

T (�) =
1

�

�
1�KE

h
e��U

i�
; � > 0: (24)

Proof. Fix � � 0. From (5) we note that

e��E[�]P[�?�t] = 1�KP [U � t] ; t � 0: (25)

Making use of this fact in the de�nition (23), we �nd

T (�) =
Z 1
0

e��te��E[�]P[�?�t]dt

=
Z 1
0

e��t (1�KP [U � t]) dt

=
1

�
�K

Z 1
0

e��tP [U � t] dt

=
1

�
�K

 "
e��t

��
P [U � t]

#1
0

�
Z 1
0

e��t

��

d

dt
P [U � t] dt

!

and the desired conclusion (24) follows from the fact P [U � 0] = 0.
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Fix � > 0. Thus, using the expression from Lemma 1 in (22), we conclude
that

E

h
e��R

i
= 1�

1

�+ �
�

�

1�KE [e��U ]
: (26)

However, for the M jGj1 queue (�; �), it is plain that R =st B + I with (i)
B and I independent; (ii) the rv B is distributed according to a busy cycle
length; and (iii) the rv I is distributed according to an idle period, thus is
an exponential rv with parameter � so that

E

h
e��I

i
=

�

�+ �
: (27)

Consequently,

E

h
e��B

i
=
E

h
e��R

i

E [e��I ]
=
�+ �

�
�

�

�(1�KE [e��U ])
(28)

Hence,

1� E
h
e��B

i

�
=

1

�
�

KE
h
e��U

i

1�KE [e��U ]

=
1

�
�
1X

`=1

(KE
h
e��U

i
)`

=
K

�(1�K)
�
1X
`=1

(1�K)K`�1(E
h
e��U

i
)`

=
K

�(1�K)
E

h
e��(U1+:::+U�)

i
(29)

where � is the IN{valued rv with geometric distribution (4). Letting � go to
zero in (29) we conclude that the rv B is integrable with mean given by (7).
This allows a rewriting of (29) as

1� E
h
e��B

i

�E [B]
= E

h
e��(U1+:::+U�)

i
; (30)

whence
E

h
e��B

?

i
= E

h
e��(U1+:::+U�)

i
(31)

This completes the proof of Theorem 1.
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